Exploring Azure Functions for Scheduler

azure-function-documentdb.png

During my first job after finishing my undergraduate degree in NUS, I worked in a local startup which was then then the largest bus ticketing portal in Southeast Asia. In 2014, I worked with a senior to successfully migrate the whole system from on-premise to Microsoft Azure Virtual Machines, which is the IaaS option. Maintaining the virtual machines is a painful experience because we need to setup the load balancing with Traffic Manager, database mirroring, database failover, availability set, etc.

In 2015, when I first worked in Singapore Changi Airport, with the support of the team, we made use of PaaS technologies such as Azure Cloud Services, Azure Web Apps, and Azure SQL, we successfully expanded our online businesses to 7 countries in a short time. With the help of PaaS option in Microsoft Azure, we can finally have a more enjoyable working life.

Azure Functions

Now, in 2017, I decided to explore Azure Functions.

Azure Functions allows developers to focus on the code for only the problem they want to solve without worrying about the infrastructure like we do in Azure Virtual Machines or even the entire applications as we do in Azure Cloud Services.

There are two important benefits that I like in this new option. Firstly, our development can be more productive. Secondly, Azure Functions has two pricing models: Consumption Plan and App Service Plan, as shown in the screenshot below. The Consumption Plan lets us pay per execution and the first 1,000,000 executions are free!

Screen Shot 2017-02-01 at 2.22.01 PM.png
Two hosting plans in Azure Functions: Consumption Plan vs. App Service Plan

After setting up the Function App, we can choose “Quick Start” to have a simpler user interface to get started with Azure Function.

Under “Quick Start” section, there are three triggers available for us to choose, i.e. Timer, Data Processing, and Webhook + API. Today, I’ll only talk about Timer. We will see how we can achieve the scheduler functionality on Microsoft Azure.

Screen Shot 2017-02-05 at 11.16.40 PM.png
Quick Start page in Azure Function.

Timer Trigger

Timer Trigger will execute the function according to a schedule. The schedule is defined using CRON expression. Let’s say if we want our function to be executed every four hours, we can write the schedule as follows.

0 0 */4 * * *

This is similar to how we did in the cron job. The CRON expression consists of six fields. The first one is second (0-59), followed by minute (0 – 59), followed by hour (0 – 23), followed by day of month (1 – 31), followed by month (1 – 12) and day of week (0-6).

Similar to the usual Azure Web App, the default time zone used in Azure Functions is also UTC. Hence, if we would like to change it to use another timezone, what we need to do is just add the WEBSITE_TIME_ZONE application setting in the Function App.

Companion File: function.json

So, where do we set the schedule? The answer is in a special file called function.json.

In the Function App directory, there always needs a function.json file. The function.json file will contain the configuration metadata for the function. Normally, a function can only have a single trigger binding and can have none or more than one I/O bindings.

The trigger binding will be the place we set the schedule.

{
    "bindings": [
        {
            "name": "myTimer",
            "type": "timerTrigger",
            "direction": "in",
            "schedule": "0 0 */4 * * *"
        },
        ...
    ],
    ...
}

The name attribute is to specify the name of the parameter used in the C# function later. It is used for the bound data in the function.

The type attribute specifies the binding time. Our case here will be timerTrigger.

The direction attribute indicates whether the binding is for receiving data into the function (in) or sending data from the function (out). For scheduler, the direction will be “in” because later in our C# function, we can actually retrieve info from the myTimer parameter.

Finally, the schedule attribute will be where we put our schedule CRON expression at.

To know more about binding in Azure Function, please refer to the Azure Function Developer Guide.

Function File: run.csx

2nd file that we must have in the Function App directory is the function itself. For C# function, it will be a file called run.csx.

The .csx format allows developers to focus on just writing the C# function to solve the problem. Instead of wrapping everything in a namespace and class, we just need to define a Run method.

#r "Newtonsoft.Json"

using System;
using Newtonsoft.Json;
...

public static async Task Run(TimerInfo myTimer, TraceWriter log)
{
    ...
}

Assemblies in .csx File

Same as how we always did in C# project, when we need to import the namespaces, we just need to use the using clause. For example, in our case, we need to process the Json file, so we need to make use of the library Newtonsoft.Json.

using Newtonsoft.Json;

To reference external assemblies, for example in our case, Newtonsoft.Json, we just need to use the #r directive as follows.

#r "Newtonsoft.Json"

The reason why we are allowed to do so is because Newtonsoft.Json and a few more other assemblies are “special case”. They can be referenced by simplename. As of Jan 2017, the assemblies that are allowed to do so are as follows.

  • Newtonsoft.Json
  • Microsoft.WindowsAzure.Storage
  • Microsoft.ServiceBus
  • Microsoft.AspNet.WebHooks.Receivers
  • Microsoft.AspNet.WebHooks.Common
  • Microsoft.Azure.NotificationHubs

For other assemblies, we need to upload the assembly file, for example MyAssembly.dll, into a bin folder relative to the function first. Only then we can reference is as follows.

#r "MyAssembly.dll"

Async Method in .csx File

Asynchronous programming is recommended best practice. To make the Run method above asynchronous, we need to use the async keyword and return a Task object. However, developers are advised to always avoid referencing the Task.Result property because it will essentially do a busy-wait on a lock of another thread. Holding a lock creates the potential for deadlocks.

Inputs in .csx File and DocumentDB

latest-topics-on-dotnet-sg-facebook-group
This section will display the top four latest Facebook posts pulled by Azure Function.

For our case, the purpose of Azure Function is to process the Facebook Group feeds and then store the feeds somewhere for later use. The “somewhere” here is DocumentDB.

To gets the inputs from DocumentDB, we first need to have 2nd binding specified in the functions.json as follows.

{
    "bindings": [
        ...
        {
            "type": "documentDB",
            "name": "inputDocument",
            "databaseName": "feeds-database",
            "collectionName": "facebook-group-feeds",
            "id": "41f7adb1-cadf-491e-9973-28cc3fca57df",
            "connection": "dotnetsg_DOCUMENTDB",
            "direction": "in"
        }
    ],
    ...
}

In the DocumentDB input binding above, the name attribute is, same as previous example, used to specify the name of the parameter in the C# function.

The databaseName and collectionName attributes correspond to the names of the database and collection in our DocumentDB, respectively. The id attribute is the Document Id of the document that we want to retrieve. In our case, we store all the Facebook feeds in one document, so we specify the Document Id in the binding directly.

The connection attribute is the name of the Azure Function Application Setting storing the connection string of the DocumentDB account endpoint. Yes, Azure Function also has Application Settings available. =)

Finally, the direction attribute must be “in”.

We can then now enhance our Run method to include inputs from DocumentDB as follows. What it does is basically just reading existing feeds from the document and then update it with new feeds found in the Singapore .NET Facebook Group

#r "Newtonsoft.Json"

using System;
using Newtonsoft.Json;
...

private const string SG_DOT_NET_COMMUNITY_FB_GROUP_ID = "1504549153159226";

public static async Task Run(TimerInfo myTimer, dynamic inputDocument, TraceWriter log)
{
    string sgDotNetCommunityFacebookGroupFeedsJson = 
        await GetFacebookGroupFeedsAsJsonAsync(SG_DOT_NET_COMMUNITY_FB_GROUP_ID);
    
    ...

    var existingFeeds = JsonConvert.DeserializeObject(inputDocument.ToString());

    // Processing the Facebook Group feeds here...
    // Updating existingFeeds here...

    inputDocument.data = existingFeeds.Feeds;
}

Besides getting input from DocumentDB, we can also have DocumentDB output binding as follows to, for example, write a new document to DocumentDB database.

{
    "bindings": [
        ...
        {
            "type": "documentDB",
            "name": "outputDocument",
            "databaseName": "feeds-database",
            "collectionName": "facebook-group-feeds",
            "id": "41f7adb1-cadf-491e-9973-28cc3fca57df",
            "connection": "dotnetsg_DOCUMENTDB",
            "createIfNotExists": true,
            "direction": "out"
        }
    ],
    ...
}

We don’t really use this in our dotnet.sg case. However, as we can see, there are only two major differences between DocumentDB input and output bindings.

Firstly, we have a new createIfNotExists attribute which specify whether to create the DocumentDB database and collection if they don’t exist or not.

Secondly, we will have to set the direction attribute to be “out”.

Then in our function code, we just need to have a new parameter with “out object outputDocument” instead of “in dynamic inputDocument”.

You can read more at the Azure Functions DocumentDB bindings documentation to understand more about how they work together.

Application Settings in Azure Functions

Yes, there are our familiar features such as Application Settings, Continuous Integration, Kudu, etc. in Azure Functions as well. All of them can be found under “Function App Settings” section.

Screen Shot 2017-02-18 at 4.40.24 PM.png
Azure Function App Settings

As what we have been doing in Azure Web Apps, we can also set the timezone, store the App Secrets in the Function App Settings.

Deployment of Azure Functions with Github

We are allowed to link the Azure Function with variety of Deployment Options, such as Github, to enable the continuous deployment option too.

There is one thing that I’d like to highlight here is that if you are also starting from setting up your new Azure Function via Azure Portal, then when in the future you setup the continuous deployment for the function, please make sure that you first create a folder having the same name as the name of your Azure Function. Then all the files related to the function needs to be put in the folder.

For example, in dotnet.sg case, we have the Azure Function called “TimerTriggerCSharp1”. we will have the following folder structure.

Screen Shot 2017-02-18 at 4.49.11 PM.png
Folder structure of the TimerTriggerCsharp1.

When I first started, I made a mistake when I linked Github with Azure Function. I didn’t create the folder with the name “TimerTriggerCSharp1”, which is the name of my Azure Function. So, when I deploy the code via Github, the code in the Azure Function on the Azure Portal is not updated at all.

In fact, once the Continuous Deployment is setup, we are no longer able to edit the code directly on the Azure Portal. Hence, setting up the correct folder structure is important.

Screen Shot 2017-02-18 at 4.52.17 PM.png
Read only once we setup the Continuous Deployment in Azure Function.

If you would like to add in more functions, simply create new folders at the same level.

Conclusion

Azure Function and the whole concept of Serverless Architecture are still very new to me. However, what I like about it is the fact that Azure Function allows us to care about the codes to solve a problem without worrying about the whole application and infrastructure.

In addition, we are also allowed to solve the different problems using the programming language that best suits the problem.

Finally, Azure Function is cost-saving because we can choose to pay only for the time our code is being executed.

If you would like to learn more about Azure Functions, here is the list of references I use in this learning journey.

You can check out my code for TimerTriggerCSharp1 above at our Github repository: https://github.com/sg-dotnet/FacebookGroupFeedsProcessor.